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A necessary condition for total controllability (in an arbitrary time) of a non-linear real analytical 

dynamical system is proved. In the linear case, it reduces to the well-known Kalman criterion [l]. 

Unlike the previously known non-linear generalizations of the Kalman condition f2, 31 the proposed 

condition follows from global considerations based on the construction of semi-permeable surfaces for 

the dynamical system under comdderation. 

1. THE KALMAN complete controllability criterion [l] is well known in the theory of linear controlled 
systems. In order for the system 

x’=Ax+Bu,xEV,UEU (1.1) 

where A :V +V, A :V + V are linear operators, to be completely controllable, it is necessary and 

sufficient that 

rank (B, A& . . . , A “-‘B)=n, n=dimV (1.2) 

Some non-linear analogues of the Kahnan criterion (1.2) are also known, relating to non-linear control- 

led systems of the form 

x.=f<x) + g(x)u, x E v. u E u (1.3) 

Here it already makes sense to regard V as merely a smooth manifold and not necessarily a vector 

space, f as a smooth vector field on V, and q as a smooth linear map of the vector space U into the tangent 

bundle TV of the manifold V. A necessary condition for the complete controllability of system (1.3) in the 
real-analytic case consists [2,3] in the fact the Lie algebra of the vector fields generated by the fields f and 
gut for all possible I( E IT, has the maximum point x E V 

rank, Lieu, 0) = dim V (I.41 

(this means that repeated commutators of the fields f and gu at each point x E V generate the tangent 
space 7”V). We know that for system (1.1) the above condition turns into the Kahnan condition, and is 

therefore necessary and sufficient. In the general case, condition (1.4) is only necessary, as is clear from 
the following trivial example. Suppose 

V=R’=Re, +Re,, f=e,,g=e,,uER (1.5) 

tPriki. Mut. Mekh. Vol. 57, No. 1, pp. 184-186.1993. 

211 



212 A. I. OVSEYEVICH 

Condition (1.4) is of course satisfied, however under motion along the trajectories of system (1.3) the 

coordinate x, increases monotonically, which of course contradicts the total controllability. 
In this paper, it is shown that condition (1.4) can be strengthened to 

rankx Z&u) = dim Y (1.6) 

where Z&u) denotes the ideal generated by the fields gu in the Lie algebra Lie(f, gu), while rank, (or 
dim,) are the d~ensions of the subspace in the tangent space at the point x. For system (1.1) condition 
(1.6) is again equivalent to the KaIman condition. 

Note that example (1.5) already fails to satisfy condition (1.6) since Z(gu) in this situation is identical 
with Re,. At the same time a minor complication of example (1.5) shows that condition (1.6) is after all 

again insufficient. 

Indeed, suppose 

f(x)= &,P,, g=ez 

V=R*=](~,,x~)=x~e, +x,e,/, UER (I-7) 

where Q, >O and rp’> 0. Then Z&M) contains the field g=qu[g, f]=(p’e,, and hence condition (1.6) is 
satisfied, while the first coordinate x, of the phase vector increases monotonically with time, which 

contradicts controllabiIity. 

2. We consider the controlled dynamical system (1.3). We assume that V is a real analytic manifold and 
that the fieldsfand gu are real and analytic. We also assume that the first group of real homologies of the 

manifold V is null 

H,(V,R!=O (2.1) 

Condition (2.1) will be used in the following equivalent form. Suppose p : M + V is a covering whose 
deck transformation group r = zl(V)lp.lr,(M) is a sub-group of the additive group of real numbers. Then 

p is an isomorphism. 
Condition (2.1) is satisfied, for example, when V = R” or S” (an n-dimensional sphere) and is not 

satisfied when V = (S’)” (an n-dimensional torus). 

Theorem. Condition (1.6) is necessary for the complete controllability (over an arbitrary time) of 

system (1.3). 

Proof: Assume the contrary. Suppose that condition (1.6) is not satisfied at at least one point n E V, 
while system (1.3) is completely controllable,. From the complete controllability it follows that rank,Z(gu) 
does not depend in the point x E V. 

Indeed suppose Z c Lie(X) is an arbitrary ideal in the Lie algebra generated by the vector fields X, 

depending on the parameter u E U, and I, is the restriction of the fields of Z to the tangent space at the 
point x. 

Then, denoting by dx the phase flow corresponding to the field X, and by (e”y). its action on vector 
fields, we find that if Z c g is an ideal in the Lie algebra g consisting of vector fields on V, x E g, and IO, 
is the sub-sheaf of the bundle of the sheaf of vector fields on G generated by the ideal I, then 

(t?*x)*zuy c zuv 

Assertion (2.2) follows from the finite generation of ZO, as a sheaf of modules over O,, which in turn 

follows because the ring of germs of analytic functions is Noetherian. 
From this it follows that if y = elxn, then 

zy = cerx), 1, 

and, in particular 
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dimly” dim& (2.4) 

(We remark in passing that condition (1.4) immediately follows from the fact that dimg, does not 
depend on x E V (special case (2.4)) and the Frobenius’ theorem). 

By applying relation (2.4) repeatedly in the situation being considered and using the complete control- 
lability condition we obtain 

ranky I@) = rank, I@) (2.5) 

for any pair of points x, y . 
The ideal Z(gu) has in the Lie algebra Lie(f, gu) a codimension not greater than one, because the 

element in finZ(gu) generates Lie(f, gu) as a vector space. Then, using the necessary condition (1.4) for 

complete controllability, relation (2.5) and the assumption that condition (1.6) is not satisfied, we find that 

the ideal Z(gu) defines a foliation F on V of codimension 1. Furthermore, there is a field f, everywhere 
transverse to the foliation and such that its phase flux 0, = e@ (by (2.2)) takes F into itself. (If the field F 

does not generate a one-parameter group, i.e. the corresponding differential; equation can only be solved 
for short times, then one can replace f by a field rf where r > 0 is a smooth (or real analytic) functions that 
decreases sufficiently rapidly at infinity, which itself generates a one-parameter group.) 

We consider the map 

#:RXL+V 

@(r, x) = O,(X) = dqx, (2.6) 

where L is some fixed leaf of our foliation F. 

We claim that @I is a covering and its deck transformation group is a sub-group of real numbers R . 
Indeed, Q is a local isomorphism by virtue if the transversatility of the field f to the foliation F and, if 

U c Rx L is an open subset isomorphic to #(U), then 

O”@(U))= UO,(U) = vxl-, 
Id- 

where a,(~, x)= (r- r, Q,(x)) and r c R is the set of those values t E R for which O,(L)= L. The reason 

for this decomposition of @--‘(Q(U)) is that if the intersection cP,(L.)nL is non-empty, then O,(L)= L 
because a,(F)= F. Obviously the deck transformation group r of the covering 0 is a sub-group of R. 
The conditions of the theorem (see (2.1)), however, prohibit non-trivial coverings of this type over the 
manifold V. It remains to conclude that 0 is an isomorphism. Hence there is a global coordinate t in V 
which increases montonically along the trajectories of system (1.3). Such a situation is of course 
inconsistent with complete controllability. 

The theorem is proved. 
Note that the only place in the proof which does not carry through in the infinitely differentiable case is 

relation (2.2). It is however, satisfied if the sheaf IO, is finitely generated over 0,. (Here 0, is the sheaf 
of germs of infinitely smooth functions.) 

We will conclude with an example showing that one cannot totally avoid condition (2.1). To this end we 
modify example (1.5) as follows. We take V = T2 = R2 /Z2 to be the two-dimensional torus, f = ae, ++, 
g = e,, u E R. Here e, and e, are unit coordinate vectors in R2 =T,V and a is an irrational constant. It is 
obvious that rank, Z(w), = 1 and condition (1.6) is not satisfied. Nevertheless in this case, system (1.3) is 
completely controllable. which follows from the density of the integral curve of the field f in V. (For more 
general results of this kind see [6].) 
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